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ABSTRACT
The high energy physics (HEP) community relies upon a
global network of computing and data centers to analyze
data produced by multiple experiments at the Large Hadron
Collider (LHC). However, this global network does not sat-
isfy all research needs. Ambitious researchers often wish
to harness computing resources that are not integrated into
the global network, including private clusters, commercial
clouds, and other production grids. To enable these use
cases, we have constructed Lobster, a system for deploying
data intensive high throughput applications on non-dedicated
clusters. This requires solving multiple problems related to
non-dedicated resources, including work decomposition, soft-
ware delivery, concurrency management, data access, data
merging, and performance troubleshooting. With these tech-
niques, we demonstrate Lobster running effectively on 10k
cores, producing throughput at a level comparable with some
of the largest dedicated clusters in the LHC infrastructure.

1. INTRODUCTION
The high energy physics (HEP) community relies upon

the WLCG, a global network of computing centers to an-
alyze data produced by multiple experiments at the Large
Hadron Collider (LHC). Due to the complexity of the analy-
sis software and the quantity of data involved, each of these
data centers employs a high degree of central management.
Teams of system administrators ensure that the proper soft-
ware is installed on every node, that data is delivered in a
timely manner, and that users receive service in accordance
with data center policies. As a result, the resource manage-
ment software that has evolved generally assumes that the
underlying system is prepared, orderly, and robust.

However, this global network does not satisfy all research
needs. Ambitious researchers often wish to harness com-
puting resources that are not integrated into the global net-
work. This might include volunteer computing systems, in-
dependent clusters at universities, data centers part of other
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infrastructure services, or commercial cloud systems. While
powerful, these systems are not immediately prepared to ser-
vice HEP workloads, because the required software stacks,
data sharing services, and workload management software
are not present. Further, these resources are not dedicated
and commonly evict users without warning as resource avail-
ability and scheduling policies dictate.

To address this problem, we have developed Lobster, a
system for effectively harnessing large non-dedicated clusters
for high throughput workloads. Unlike previous solutions,
the system is designed to handle the natural consequences
of non-dedicated resources in multiple dimensions: task con-
struction, software delivery, data access, output manage-
ment, and system monitoring. Lobster brings together a
variety of existing systems – HTCondor, Work Queue, Par-
rot, CVMFS, Chirp, Hadoop – along with new capabilities
to yield a comprehensive workload management system.

In this paper, we describe our experience in designing, im-
plementing, and operating Lobster on large clusters over the
course of a year. We describe how each layer of the software
is affected by our assumption of non-dedicated resources, in-
cluding work decomposition, software delivery, concurrency
management, data management, and post-processing. A
particular challenge throughout is system-level analysis and
troubleshooting. Frequently, a change in the behavior or
performance of a system not under our direct control –
such as a remote data service – can have cascading effects
throughout the system. We have developed a novel tech-
nique for tracking and observing the performance of the sys-
tem comprehensively so as to facilitate this troubleshooting.

Overall, we demonstrate that Lobster is able to scale up
to clusters as large as 10k cores, which is comparable in scale
to the dedicated resources provided by Tier 2 sites on the
WLCG.

2. BACKGROUND
The combined output of the four experiments at the Large

Hadron Collider (LHC) is approximately 30 petabytes (PB)
of data per year [2]. The needs of the roughly 10,000 sci-
entists associated with the LHC experiments for comput-
ing resources to analyze this data has driven the creation
of the Worldwide LHC Computing Grid (WLCG) to dis-
tribute and process this data. The WLCG is divided into
four tiers. Tier-0 (T0), a single site at CERN, provides first
basic processing that has to be applied to all data, known as
prompt reconstruction. From there, all data is distributed
to Tier-1 (T1) sites located at thirteen national-level com-



puting facilities. T1 sites perform archiving, distribution,
and reprocessing of data as new calibration data becomes
available. 160 Tier-2 (T2) sites located at universities and
labs provide the facilities for scientists to interact with the
data and run specific analyses to generate physics results. A
few hundred Tier-3 (T3) sites consist of local clusters that
individual researchers use for analysis jobs that require quick
turnaround and a gateway to the wider WLCG.

Computing across the LHC can be roughly divided into
two categories: production and analysis.

Production computing involves the prompt reconstruc-
tion, distribution of the files to T1 sites, reprocessing, and
generation of simulated datasets that provide a common
starting point for all other scientific analysis. Production
computing capacity is the rate limiting factor for the CMS
detector [1], which can record events at 1 kHz, but is limited
to approximately half of that because there are insufficient
WLCG resources to store and process the full amount. The
need for more production capacity has driven a significant
amount of work in opportunistic computing [7, 13, 19].

Analysis computing, in contrast, is undertaken by small
groups of researchers that process a subset of the production
data in order to study a local interest. A typical analysis
consumes approximately

0.1 to 1 PB of data, selected via a metadata service, and
subsequently processed and reduced through several stages
until the final result is generated. Analysis computing needs
go through significant spikes and lulls, driven by the activity
of individual researchers.

Historically, analysis computing has been performed at
T2 and T3 centers at a lower priority than the (more pre-
dictable) production computing. But, a problem looms on
the horizon: both production and analysis computing needs
will grow significantly since the intensity and energy of the
LHC will increase by a factor of two in 2015; needs for anal-
ysis computing are expected to increase by a factor of three
to four due to the increase in event complexity and much
larger data sets. Budgetary limits prevent growing the T2
and T3 resources by the same factor, so researchers must
find operational fficiencies and harness new resources.

Opportunistic clusters may be able to absorb some of the
needs of analysis computing. We define opportunistic clus-
ters to be computing sites that are not specifically dedicated
to the WLCG and may include campus clusters, HPC cen-
ters, and commercial clouds. These systems present new
challenges because they may not have the necessary soft-
ware and data management infrastructure pre-installed, and
may not give preference to CMS computing in scheduling.
CMS has already demonstrated the feasibility of leveraging
opportunistic resources in the context of production com-
puting [13] and also as a way to handle overflow in demand
placed on T2 sites.

In this work, we consider how to harness opportunistic
clusters in order to augment T3 resources for analysis com-
puting. To accomplish this, several challenges must be met:

First, the job scheduling and execution system must per-
mit each independent user control over what resources are
harnessed and how jobs are scheduled. The current CMS
workflow management tools (WMAgent [8] for production
and CRAB [17, 6] for T2 analysis) use the GlideInWMS [15]
framework for job management. PanDa [14], the work-
flow management tool at ATLAS, uses a similar approach.
While this solution is efficient, it provides a single central-

Figure 1: Lobster Architecture

ized scheduling point for the entire collaboration, making it
impossible to harness and schedule a resource for the sole
use of a single user. To address this, we employ the Work
Queue [3] execution framework, which can be easily deployed
on a per-user basis.

Second, each job must consume some fraction of the enor-
mous CMS data. By definition, opportunistic resources do
not provide direct, local access to CMS data, so jobs must
access the data by streaming it over the WAN from WLCG
repositories. This challenge has already been successfully
met by the CMS“Any Data, Anytime, Anywhere”(AAA) [12]
data federation using the XrootD software [10] framework.
In a similar way, each job depends on a complex custom
software stack which is also not installed on an opportunis-
tic resource. For this, we rely on the Parrot virtual file
system to provide transparent access to the CERN Virtual
Machine File System (CVMFS) [4] .

Third, each component of the system must be designed
under the assumption that running jobs will, sooner or later,
be preempted by other jobs or the resource owner as avail-
ability or scheduling policies change. The costs of these pre-
emptions are magnified by the amount of state (software
and data) on the preempted node, so the system must be
designed to pull the minimum amount of state and share it
among jobs to the maximum extent possible.

Last but not least, the user of an opportunistic resource
can only expect to have ordinary user permissions. The
owner of the resource is unlikely to install software, modify
kernels, or elevate privileges for a transient user on a large
number of machines. Every component of the system must
be able to operate effectively with a minimum of privilege.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-

lions of data intensive analysis codes on tens of thousands
of cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and
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Figure 2: Worker Eviction Probability
Probability of worker eviction as a function of of its avail-
ability time, taken from physics analysis runs performed over
several months. Uncertainties are estimated using the bino-
mial model.

economic concerns change.
Figure 1 shows the architecture of Lobster. An execution

begins with the main Lobster process that is invoked by the
user to initiate a workload. The user provides a configu-
ration file which describes the input data sources and the
analysis code which is to be run on each input data source.
The main Lobster process creates a local SQlite database
(Lobster DB) which persistently records the mapping from
tasklets to tasks. 1

The tasks themselves are executed by the Work Queue
(WQ) distributed execution system, which consists of a mas-
ter and a large number of workers The main Lobster pro-
cess creates an instance of a master, generates individual
tasks, records them in the Lobster-DB, and then submits
the tasks to the master. The master passes these tasks to
workers, where the tasks are executed. As tasks complete,
notification is returned to the master. As tasks are returned
from the master to the main Lobster process, the Lobster
DB is updated appropriately.

To get work done, the user must start workers by one
means or another. Workers need not all be on the same sys-
tem; they can be running simultaneously on any systems to
which the user has access. Worker processes can be started
individually from the command line, but more commonly the
request for workers is submitted in bulk to a batch system
which can start hundreds to thousands of workers simulta-
neously. When a worker is ready to accept a task, it makes
a TCP connection back to the master, which sends tasks.

A single master will eventually reach a limit in the number
of workers that it can drive directly. Scalability can be im-
proved in two ways. First, a single worker can be configured
to manage multiple cores on a machine, and run multiple
tasks simultaneously, sharing a single cache directory, and

1Conceptually, the scheduler node could be implemented as
a replicated service, storing its state in a service such as
Zookeeper [11]. To date, this has not been necessary because
the system state is quickly and automatically recovered if the
scheduler node should crash and reboot.
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Figure 3: Simulated Efficiency by Task Length
Efficiency, calculated as the ratio of effective processing time
to total time, as a function of the average task length for
the simulated processing of 100,000 tasklets and assuming a
constant probability of eviction (dotted), a probability derived
from observation (dashed), or no eviction (solid.)

a single connection to the master. In addition, the number
of workers can be increased by introducing foremen be-
tween the master and the workers to create a hierarchy of
arbitrary width and depth. In this work, we use one inter-
mediate rank of four foreman driving a variable number of
workers managing eight cores each.

HEP applications generally require a fairly complex ex-
ecution environment. To this end, each task consists of a
wrapper which performs pre- and post-processing around
the actual application. The pre-processing steps checks for
basic machine compatibility, obtains the software distribu-
tion and the input data from the data tier, and starts the
application. The application runs with either FUSE or Par-
rot to access software at runtime via the CVMFS global file
system. The post-processing step sends output data back to
the data tier and summarizes task statistics, which are sent
back to the master.

4. COMPONENT EVALUATION
Each component of Lobster, from task execution to data

access, contains elements that must first be evaluated inde-
pendently for the opportunistic environment before consid-
ering the whole system. In this section, we consider each
component in turn.

4.1 Task Size Selection
For convenience, we define three terms: A tasklet is the

smallest element into which the overall workflow can be di-
vided and still be submitted as a self-contained piece of work
to a remote worker. The complete list of tasklets is created
at the beginning of the workflow. A task is a group of
tasklets that are assigned to run on a single worker core.
Tasks are created and assigned dynamically; a buffer of 400
tasks is maintained to be assigned as workers become avail-
able. A workflow can be divided into individual tasks of
any integer number of tasklets, where the task size is set
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Figure 4: Data Access Methods Compared
The overall runtime for two different data access methods
split into data processing and general overhead. Staging of
files before and after execution results in less CPU utilization
but overall runtime longer than streaming the data into the
task as it runs.

by the user and can be adjusted over the course of the run.
Tasks which are too large may be evicted from a worker by
the system owner before they are complete, in which case the
work is lost. However, splitting the workflow into too many
small tasks is also inefficient, since each additional task cre-
ates processing overhead. Consequently there is generally
an optimal task size, which can vary depending on network
traffic and other externalities.

We created a simple simulation model to determine the
optimal task size, taking into account the distribution of task
availability times, and the distribution of worker overheads,
task overheads, and task execution times.

Worker availability was observed by collecting logs from
multiple runs of Lobster spanning multiple months, mark-
ing the times at which a worker joined and left the system,
usually due to eviction by HTCondor. The probability of
worker eviction as a function of of these availability inter-
vals is shown in Figure 2.

Overhead costs are consolidated into two categories: costs
which are incurred only when a worker is started, such as
populating the cache, and those which are incurred for each
task, such as transferring output files. The per-worker and
per-task overheads are taken to be 5 and 20 minutes, re-
spectively. Tasklet completion times are taken as Gaussian
distributed with µ=10 minutes and σ=5 minutes. The total
number of tasklets to process is set at 100,000.

A pseudo-random sample of worker survival times for 8,000
workers is drawn. Tasklet processing times are drawn for
each worker, incurring per-task overhead costs at task-size
intervals. The sum of processing times for each completed
task-size interval is added to the total effective processing
time. If the total time exceeds the survival time drawn for
a given worker, it is considered ”evicted”. It incurs an ad-
ditional per-worker overhead cost, and a new survival time
is drawn. All processing time since the start of the evicted
task is considered lost and is not included in the effective
processing time. Efficiency is calculated as the ratio of ef-
fective processing time to total time.
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Figure 5: Proxy Cache Scalability
Mean task overhead times as a function of number of tasks
sharing one proxy cache, for both cold and hot worker caches.
One proxy cache can support approximately 1000 hot worker
caches.

Figure 3 shows the results of running the simulation for
task lengths ranging from 1 to 10 hours. Three eviction
scenarios are considered: a constant probability of 0.1, the
probability derived from observed availability times shown
in Figure 2, and no eviction. In all three cases, the efficiency
is low while task times are shorter than the average worker
startup costs. Without eviction, these costs are incurred
only once, so effective processing time soon dominates and
the efficiency asymptotically approaches 1. This simulation
is not sensitive to differences between the observed proba-
bility and a constant one; in both cases, the maximum CPU
efficiency is around 70% at a task length of one hour. We
consider this to be the upper limit of achievable efficiency
under non-dedicated circumstances.

4.2 Data Access
Physics analyses within the HEP community rely on sta-

tistical analysis of many particle collisions, in form of events,
produced by the detectors at the LHC. While an individual
event may be small in size, on the order of 100kB, depending
on the information stored, the overall amount of data ana-
lyzed can easily exceed 100TB. Storing such amounts of data
locally for several analysis groups is not feasible for the ma-
jority of the institutions involved with the LHC, and most of
the data is stored at large central computing facilities around
the world. To run analyses, jobs either run on remote sites
where the data is located, or rely on remote access. For the
latter, the HEP community provides the XrootD protocol,
which facilitates global access to data with full Globus au-
thentication via directory servers. This is also the primary
access mode to CMS data within Lobster.

Apart from the actual information recorded by the LHC,
HEP analysis jobs also depend on configuration and calibra-
tion information, which is distributed from CERN through
a network of proxies, using the Frontier [5] protocol.

Normally, a HEP analysis job contains only a fraction of
the information present in the input data. Hence, output
files normally range in the size of megabytes, where the pro-
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Figure 6: Parrot Cache Configurations
(a) Single cache in a worker with single read/write access. (b) Each worker has an independent cache. (c) Similar to (b),
tasks may run as individual condor jobs in a computing node, with separate caches. (d) Per worker there is a single cache with
single write access, but multiple read access. (e) As in (d), but a single computing node may run several workers at once.

cessed input is at least an order of magnitude larger. Yet the
amount of output data from several thousand jobs is enough
to overload the data handling offered by Work Queue. To
thus facilitate concurrent transfer of the job outputs to a
storage element, we use a Chirp [18] user level file server to
provide access to a backend Hadoop cluster.

The user can provide a list of input data files directly or
specify a dataset in the CMS Dataset Bookkeeping System
(DBS). In the latter case Lobster communicates with the
DBS and obtains the list of data files, experiment runs, and
lumisections in the dataset. The actual data is then provided
to the worker in one of three ways:

1. via XrootD: The worker is given the logical file name,
which is uniquely specifies any file in the CMS-wide
data federation. XrootD accesses a database server
which looks up the physical location of the file and
streams the data back to the worker.

2. via WQ: the Work Queue master process has direct
access to the system on which the input files are stored
and copies the data to the worker.

3. via Chirp: The user starts a Chirp server on the system
where the data is stored. The Lobster wrapper starts
a Chirp client on the worker, which requests files from
the server.

These file access methods can be grouped into two modes:
staging and streaming. For Lobster, the former encompasses
WQ and Chirp, while the later is comprised of XrootD. A
performance assessment of these data access modes is given
in Figure 4. Compared to streaming the input files, stag-
ing incurs a penalty resulting in larger overhead that is not
compensated in gains due to data locality while processing.

4.3 Scalable Software Delivery
Common components of the CMS software are obtained

from the CernVM File System (CVMFS), a read-only file
system from which files can be downloaded on demand. On
dedicated computing resources, the CVMFS repository is
mounted using the FUSE kernel module. This allows appli-
cations to run locally in a transparent manner even when
their executables are kept on remote machines.

FUSE requires root access, which is not available on op-
portunistic clusters. On these systems we use Parrot which
is able to access remote CVMFS repositories without mount-
ing them first. When a CMS application is run with Parrot,

it intercepts file access system calls and translates them as
necessary using LibCVMFS. System call translation allows
the remote storage system to appear as a local file system
without requiring root access, recompilation, or changes to
the original application.

LibCVMFS allows FUSE and Parrot to use the HTTP
protocol for communications between local nodes and the
CVMFS repository. This makes it possible to use Squid
proxy servers, which cache HTTP requests to reduce the
load when accessing CVMFS repositories.

Parrot optimizes operations using remote file systems by
constructing a cache in the local file system of the worker
node. For example, a seek operation is done with the local
copy whenever possible, minimizing requests to the remote
file system. When a worker node is first created, its cache is
empty (“cold”), and filling it for the first time adds to over-
head. Cache overhead is much lower for subsequent tasks
on the same worker as the cache is already filled (“hot”) and
most of the required files will be common to both tasks.
This can be seen in Figure 5, which shows the mean over-
head time for either cold or hot caches. The overhead in-
creases with the number of concurrent workers running; this
is mainly due to limitations in both communication band-
width and the capacity of the Squid proxy servers. We see
that one proxy is able to sustain about 1000 workers before
performance begins to suffer. After that point, more proxies
are needed.

When multiple instances of Parrot run on the same com-
puting worker, however, they race to access the same default
local directory to construct the cache (see Figure 6(a).). To
avoid data corruption on concurrent write access on a file,
Parrot instances will try to lock such file when trying to
create it or modify it. Parrot instances will block and wait
until they can obtain the lock for the file. When the cache is
cold, that is, empty, only the Parrot instance with the writ-
ing lock can make any progress, while other instances wait
for the lock to be released. When further instances obtain
the lock, they will find the cache already populated, allow-
ing for several tasks to be completed concurrently. This is
of course inefficient, as only one instance may have writing
access to the cache at any time.

A straightforward solution is to direct the Parrot instances
not to use the default directory (see Figure 6(b)). This au-
tomatically allows for several tasks to be completed concur-
rently per worker, and it offers similar efficiency as running
several tasks in the same computing node as individual con-
dor jobs (see Figure 6(c)). We note, however, HEP analysis
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Figure 7: Merging Modes Compared
Number of finished analysis and merge tasks as a function
of time for the sequential, hadoop, and interleaved merging
modes. The time of completion of the last merging task is
denoted with a vertical bar.

jobs use common support software, which means that the
same files are requested from the CVMFS repositories over
and over again. In effect, this increases the bandwidth re-
quired in direct proportion to the number of tasks running
per worker or computing node. For a typical HEP analysis
job, this bandwidth requirement is about 1.5 GB per cache.

These issues can be vastly improved by observing that
CVMFS is a read-only file system. Once a file is in the
cache, it will not be modified. Several Parrot instances can
then populate the cache concurrently, with each file being
copied to each worker only once, and with all Parrot in-
stances working concurrently (see Figure 6.(d)). Not only
this, but several workers may run as individual condor jobs
per computing node (see Figure 6.(e)). Support for concur-
rent CVMFS cache access (known as alien cache) has been
activated in Parrot with good results [16].

4.4 Data Merging
As noted above, Lobster task sizes are tuned to achieve

acceptable performance, taking into account evictions and
overhead times. However, this leads to significantly more
and smaller output files compared to regular CMS work-
flows. While these files could be published as-is, it would
require a significant amount of metadata, which increases
the expense of publication and further handling. To offset
these penalties, we implemented several ways to merge com-
pleted output files up to a desired file size. Typically, files
of 10-100 MB are merged into files of 3-4 GB.

Sequential Merging After all data has been processed,
Lobster will group the finished tasks by output size to form
merge tasks, yielding an output file size close to a user-
specified value. These merge tasks will concatenate the out-
put files, and also merge the associated metadata. Merge
tasks run in the same way as analysis tasks, transferring
data via XrootD (input files only), Chirp, or, as a fall-back,
Work Queue. The workload is complete when all merge
tasks are done.

Merging via Hadoop. Within CMS, Hadoop is typi-

cally used to take advantage only of the bulk storage capa-
bilities, not the Map-Reduce programming model. In this
case, Map-Reduce seems to be a natural way to conduct the
merge tasks, which access large amounts of data, but do not
need large amounts of computation.

We created an implementation of merging that is exe-
cuted entirely within Hadoop after all analysis tasks are
completed. This eliminates the need for data to flow in and
out of the Chirp server to the rest of the cluster. In this
implementation, the Map phase is used to collect the list of
small files from Lobster and group them (by name) to pro-
duce the desired size of merged output files. The grouped
names are passed to the Reduce phase. In each reducer, each
small file transferred to the local machine where the HEP en-
vironment is created and the local files are merged together.
Then the new, larger file is copied back into HDFS.

Interleaved Merging. The sequential merge procedure
as described first above places a high load on the Chirp
server, as merging tasks have a short runtime and thus more
output transfers occur concurrently than with data process-
ing. This severely limits the amount of concurrent merge
tasks that Lobster is able to handle. To reduce the time
spend merging output files after processing, Lobster is also
able to interleave merge tasks with regular tasks.

When doing interleaved merging, Lobster attempts to cre-
ate merge tasks for every task/dataset that is more than to
10 % processed. Output files will only be merged once, and
merge tasks will only be created when enough processing
tasks have finished to create a sufficiently large merged out-
put file. In this mode, some small number of merge tasks
will run at the same time as analysis tasks.

Figure 7 compares the three different merging modes in
different runs of Lobster. The bottom-most graph compares
the cumulative completion of all three methods. Each graph
shows the number of analysis tasks (white bars) and the
number of merge tasks (gray bars) completed in each time
period. For sequential and interleaved merging, XrootD was
used to transfer merging inputs, while merged files were
staged out via Chirp. As can be seen, sequential merging
takes the longest, and suffers from a long-tail effect, like any
distributed computation. Merging via Hadoop is more ef-
ficient and has a shorter tail. Interleaved merging is less
efficient in use of resources, but completes faster overall be-
cause it can be done concurrently with analysis. Lobster
currently uses the latter.

5. PERFORMANCE MONITORING
Due to the large number of interacting components in Lob-

ster, troubleshooting problems can be very challenging. A
hiccup in the performance of one element can have a cas-
cading impact on the rest of the system. For example, if
the performance of a data cache is impeded for some reason,
this will be reflected as low bandwidth in data transfers, re-
sulting in low CPU efficiency for individual tasks, and then
eventually in extended run times. To address this problem,
we have implemented a comprehensive monitoring system
that covers almost every aspect of the system and the in-
frastructure. This enables us to disentangle the root cause
of many runtime performance problems.

As a first measure, we record general information, such
as workers connected to the Lobster master, tasks running,
the number of failed and successful tasks over time, and
the output written to disk to provide an overview over the



Task Phase Time (h) Fraction (%)

Task CPU Time 171036 53.4
Task I/O Time 65356 20.4
Task Failed 44830 14.0
WQ Stage In 22056 6.9
WQ Stage Out 8954 2.8

Total 320462

Figure 8: Data Processing Runtime

throughput of the system.
To enable further drill-down, the wrapper script that runs

every user task is heavily instrumented. It is broken down
into logical segments: environment initialization, task exe-
cution, output transfer, etc. Each segment records a times-
tamp and performs an internal test for success or failure,
with a unique failure code that can be emitted for each seg-
ment. A record of the performance and success of each seg-
ment is returned back to the master. The master itself adds
to this record by providing timing information that is not
visible to the task itself, including input transfer times, task
dispatch times, overall runtime including eviction, and time
spent waiting for responses.

All of these records are stored in the Lobster DB, so that it
becomes easy to generate histograms and time lines showing
the distribution of behavior at each stage of of the execu-
tion. Of course, data by itself does not yield a diagnosis,
but this collection of data has allowed us to understand and
fix problems like the following:

• High values of lost runtime suggest that the target task
size is too high, because eviction limits the available
computation time.

• Long sandbox stage-in times or long wait times for
finished task collection suggest the usage of more fore-
men, to spread the load of sending out the sandbox.

• Consistently long setup times hint at an overloaded
squid proxy, which can be addressed by increasing the
number of cores per worker, or deploying more proxies.

• Increased stage-in and stage-out times suggest an over-
loaded Chirp server, which can be corrected by adjust-
ing the number of concurrent connections permitted.

That said, troubleshooting in a non-dedicated environ-
ment remains challenging, because the underlying system
is rarely in a constant state for more than a few hours at
a time. Monitoring and correcting a complex set of inter-
acting processes still requires human intervention and is a
fruitful area for further research.

6. LOBSTER IN PRODUCTION
We have used Lobster over the last year to process data

for the Notre Dame CMS group on nearly 20k opportunis-
tic cores at the University of Notre Dame. While there are
still opportunities for improvement, this opportunistic re-
source (at peak) is competitive with many of the dedicated
resources within the CMS collaboration. We briefly describe
our experience in running a data processing workload on
O(10k) cores and a simulation workload on O(20k) cores.
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Figure 9: Data Processing Volume
Volume of data transferred via XrootD for the top ten con-
sumers in the CMS collaboration during a 4 hour period on
January 17, 2015. During this time Lobster was running
around 9000 tasks at Notre Dame.

Data Processing Run. Figures 8, 9 and 10 tell the story
of a large data processing run that peaked at nearly 10,000
cores over the course of two days. Figure 8 gives the overall
consumption of CPU time, broken down by segments of the
workload, Figure 9 compares the data consumed by Lobster
compared other CMS sites, and Figure 10 shows the time
line of the run in tasks running, completed, and failed.

To assess performance, the overall runtime of the tasks
can be broken down as in Figure 8, which shows that about
three quarters of the total runtime were spent in the task
itself, either executing on the CPU or accessing data. The
most significant loss of efficiency is failed tasks, caused by
temporary XrootD access problems, also visible in the mid-
dle part of Figure 10. This is followed by a wall-clock time
noticeably exceeding the used CPU time. The higher con-
tribution of I/O processing time was to be expected, as the
campus bandwidth, 10 Gbit/s, was entirely used up by the
running tasks. Nevertheless, the overall efficiency, as seen in
the bottom of Figure 10, peaks close to the expected maxi-
mum, even with the aforementioned dip in efficiency due to
data access problems. Figure 9 shows that Lobster was the
biggest consumer of XrootD data within CMS at the time
of running, as measured by the global CMS dashboard.

Simulation Run. Running simulation tasks, on the other
hand, gives a very different picture. The limitation of exter-
nal bandwidth to access remote data is lessened by several
orders of magnitude, as external data is only needed to over-
lay pile-up interactions, i.e. noise, on top of the simulated
process. This allowed us to scale Lobster up to 20,000 con-
currently running simulation tasks as shown in Figure 11.
New challenges arise in that the squid deployed had trouble
serving up the data required to create the software envi-
ronment fast enough (Figure 11, second from above), which
could have been mitigated by an increased number of squid
servers. Alternatively, increasing the number of cores shar-
ing a Parrot cache should lower the cost of the software
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Figure 10: Timeline of Data Processing Run
The time evolution of a data processing run on nearly 10K cores over two days. The top graph shows the number of concurrent
tasks running, the middle show the number of tasks completed or failed in each time unit, and the bottom graph shows the
(CPU-time/wall-clock) ratio in each time unit. Note that the maximum possible ratio is approximately 70%, as discussed in
Section 4.1. The burst of failures midway is due to a transient outage of the wide-area data handling system.

setup. As data is cached on the worker, the setup cost is
significantly lowered for subsequent tasks running.

Similarly, the stage-out times via Chirp, second to last
in Figure 11, display a periodic behavior, in which transfer
times are increased due to an overloaded Chirp server. As
simulation tasks require a Chirp transfer of some of their
input files from the local storage element to the worker, ad-
ditional load is placed on the server. Together with limited
concurrent connections, which keep the underlying hardware
from becoming completely unresponsive, the Chirp server
handles incoming connections sequentially, and waves of tasks
finishing at the same time lead to the displayed behavior.

At this scale, there is a small but continuous trickle of
failed tasks, shown at the bottom of Figure 11. The most
common failures are related to the setting up the required
software, and are most likely caused by timeouts in con-
necting to the squid proxy cache. The remaining failures are
miscellaneous CMS software failure modes and are transient.
This underscores the need for continuous failure monitoring
and compensation.

7. LOBSTER IN CONTEXT
In designing Lobster, our goal was to enable the high-

throughput, data-intensive applications of HEP to run on
non-dedicated resources, such as those available through
campus clusters or commercial clouds. We have successfully
demonstrated this capability at scales of up to 8-10k simulta-
neously running tasks. At this scale, limitations in network

bandwidth for delivering the input data, and bottlenecks in
our caching infrastructure begin to have a significant impact
on application efficiency, as measured by the ratio of CPU
time to wall time consumed by tasks. We have also demon-
strated the ability to dispatch and run up to 20k simulta-
neous tasks. At this scale, we observe a precipitous growth
in task overhead because the caching infrastructure becomes
overwhelmed during the process of launching the first work-
ers that need to populate their local caches. In addition,
the Chirp server receiving task output becomes overloaded
periodically, causing periods of long stage-out times. At the
moment, we are working to overcome all of these limitations
simply by deploying more cache and Chirp resources.

To place these achievements in context, it is useful to com-
pare to the dedicated WLCG resources used by the CMS ex-
periment. A recent survey of U.S. CMS T3 sites finds that
the total deployment of T3 resources is 8899 CPU cores.
The seven U.S. CMS Tier 2 facilities currently deploy a to-
tal of 43,628 CPU cores, with the individual sites ranging
from 4,126 to 11,144 cores. The U.S. CMS T1 site at Fermi
National Accelerator Laboratory (Fermilab) deploys approx-
imately 11,000 CPU cores. Therefore, the scale of resources
currently capable of being harnessed through Lobster is com-
parable to the resources deployed at the T1 at Fermilab or
the largest of the U.S. CMS T2 sites. It’s larger than the
resources available at the average U.S. CMS T2 site and
equivalent to approximately one-quarter of the entire U.S.
CMS T2 resources. When running at the approximately
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Figure 11: Timeline of Simulation Run
The time evolution of a simulation run on nearly 20K cores over eight hours. From the top: number of concurrent tasks
running; time to setup the software release and initialize the environment; time to stage-out data from local to permanent
storage; and exit code of failed tasks as a function of time. At the beginning of the run, the release setup time peaks around
400 minutes as cold worker caches are filled simultaneously. During this period, high load on the squid proxy cache is responsible
for a small number of task failures (shown in gray in the bottom panel.) After most caches are filled, the release setup time
drops, as does the prevalence of tasks exiting with squid related failures.

10k simultaneous task scale, Lobster provides more CPU
resources than the entire set of U.S. CMS T3 resources. Ad-
mittedly, Lobster can only provide this scale of resources if
they are physically available from one or more clusters. In
our experiences, we were able to obtain this scale of resources
in short bursts opportunistically from clusters hosted in our
campus computing center. Furthermore, Lobster’s design
makes it possible to harvest resources from several clusters,
and even commercial clouds, together to achieve the desired
scale. Thus, Lobster makes it possible for a single user to
harness a scale of resources, at least in bursts, which is sig-
nificant on the US-CMS national scale.

Another way to gauge the significance of this work is to
compare the scale of running tasks achieved with Lobster
to the scale achieved by the dedicated global job submission
infrastructure of CMS. CMS has recently merged all job sub-
mission, including production jobs managed via WMAgent

and analysis jobs managed via CRAB, into a single job sub-
mission pool implemented via GlideInWMS, known as the
Global Pool [9]. The Global Pool, operated on dedicated
WLCG hardware by an international team providing con-
tinuous monitoring and support, has achieved a record of
just over 110k simultaneously running jobs across all CMS
WLCG T1 through T3 resources. The Global Pool team
is currently focused on resolving bottlenecks to achieve a
scale of 200k simultaneously running jobs. Lobster empow-
ers a single user to access a scale of opportunistic resources
approximately 10% the size of the global pool without in-
tervention from systems administrators.

While the current incarnation of Lobster contains code
specific to the CMS experiment, expanding the scope to
other LHC experiments or HEP collaborations is feasible
without much effort. As the used software delivery and
data access methods are already popular within the HEP



community, changes would mainly be required for the input
metadata acquisition, the task sandbox, the task execution
scaffolding on the worker, and the treatment of file merg-
ing. Input metadata discovery is already structured modu-
larly, and merging treatment can easily be abstracted in a
similar fashion. Code specific to the task execution on the
worker would have to be completely replaced, as the setup
of the working environment and the post-execution analysis
of CMSSW framework reports are very CMS-specific.

8. CONCLUSION AND FUTURE WORK
The future evolution of Lobster is targeted first at finding

ways, either through operational efficiencies or by deploying
more network and caching resources, to exceed the approxi-
mately 10k task scale and reach the 20k scale. Beyond this,
we are focused on finding ways to boost processing efficiency.
A key lesson learned from Lobster to date is the impor-
tance of monitoring every aspect of opportunistic resources
so that the user can quickly diagnose problems arising from
transient failures or shifts in resource performance. Thus,
we continue to work on improvements to monitoring. Fur-
thermore, we are investigating ways to make use of the rich
monitoring data collected via Lobster to enable automatic
performance optimization through dynamic adjustment of
task size in the face of changing eviction rates and resource
performance. Achieving this goal will allow us to address
a major source of observed processing inefficiency, resulting
from the inevitable delay between a change in opportunis-
tic running conditions and the appropriate response from
the user monitoring the running tasks. Finally, we are in
the process of working with the broader CMS software and
computing team to implement selected features from Lob-
ster as part of the CRAB workload management tool, to
make the features of Lobster available to the wider CMS
user community.
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