
Lobster: Scaling
Opportunistic CMS

Workflows to 10k cores
Anna Woodard, Matthias Wolf, Charles Mueller, Nil
Valls, Ben Tovar, Patrick Donnelly, Peter Ivie, Paul

Brenner, Douglas Thain, Kevin Lannon, Michael Hildreth

Thursday, February 26, 15

K. Lannon

What is Lobster?

Large-scale Opportunistic Batch Submission Toolkit
for Exploiting Resources
Workflow submission and management tool written
from scratch by two ND grad students (Matthias
Wolf and Anna Woodard)
Borrows ideas from CRAB2/3 and grid-control
Based on CCTools suite (WorkQueue, Parrot, Chirp)
from ND team led by Doug Thain
Primary goal: Get access to ND’s opportunistic
computing resources

2
Thursday, February 26, 15

K. Lannon

ND CRC Resources
ND Center for Research Computing houses ~21k CPU cores and 2.5 PB of
storage

Most resources belong to individual PIs
Available for opportunistic usage when idle (evicted when owners reclaim
resources)

3
Thursday, February 26, 15

K. Lannon

Lobster Architecture
Main components

Scheduling:
schedules and
dispatches jobs
Data: managing
input/output data
and software
Execution: runs
tasks on
opportunistic
resources

Master-worker
architecture

4

flows is in managing the opportunistic resources and e�-
ciently deploying workloads to them. The CMS workflow
management tools used for production (WMAgent [?]) or
T2 analysis (CRAB [?]) address this challenge using the
GlideInWMS [?] software framework. Although GlideIn-
WMS provides an excellent solution within those contexts,
capable of directing workloads to any OSG resource as well
as cloud resources following either the Amazon EC2 [?] or
Openstack [?] framework, it is less suitable in the context
of university clusters and T3 resources. The GlideInWMS-
based solution is well suited to the situation in which the
goal is obtaining access to the opportunistic resources for
the CMS collaboration as a whole. It lacks the capability to
limit access to a subset of the collaboration. This presents a
significant limitation in achieving the goal of integrating op-
portunistic campus resources for which the situation is often
that only specific users—for example, facutly and students
from the institution—are authorized to use the resources.
The approach described in this paper chooses an alternative
set of resource and management workload tool set especially
well suited for the case where access to resources must be
controlled with a fine granularity.

In addition to the challenges mentioned above, there are a
number of issues important for making use of opportunis-
tic resources under a wide range of situations that have not
yet been overcome by the existing tools employed by CMS.
Many scenarios for using opportunistic resources involve the
possiblibilty that running jobs will be preempted by the re-
source owners own jobs. Although strategies exist to miti-
gate the impacts of preemption, the nature of analysis jobs,
where it is essential that each proton collision is analyzed
once and only once, complicates the problem. Another chal-
lenge that is especially applicable to campus clusters is the
scenario in which a user has access to a potentially large scale
of generic computing resources, but cannot obtain the neces-
sary admin-level support to adapt those resources to a spe-
cialized analysis task, like LHC data analysis. In such cases,
it can be extremely powerful to have a set of tools which op-
erate with user-level permissions to accomplish things that
might otherwise require admin-level intervention. The ap-
proach explored in this paper seeks to address both of these
challenges as well.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-
lions of data intensive applications on tens of thousands of
cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and
economic concerns change.

The components of Lobster are arranged in three tiers: the
scheduling tier schedules and dispatches the jobs to be
run, the data tier manages the input data, output storage,
and software delivery system, and the execution tier con-
sists of a large collection of opportunistic machines where
analysis jobs run.

Figure 1 shows the architecture of Lobster. An execution be-

Figure 1: Lobster Architecture

gins with the main Lobster process1 that is invoked by the
end user to initiate a workload. The user provides a config-
uration file which describes the input data sources and the
analysis code which is to be run on each input data source.
The main Lobster process creates a local SQlite database
(Lobster DB) which persistently records the mapping from
jobs to tasks. to persistently the data files, the jobits into
which the task is divided, and the generation and progress
of jobs on remote worker cores.

(Conceptually, the scheduler node could be implemented as
a replicated service, storing its state in a service such as
Zookeeper [?]. To date, this has not been necessary because
the system state is quickly and automatically recovered if
the scheduler node should crash and reboot.)

The tasks themselves are executed by theWork Queue (WQ) [?]
distributed execution system, which consists of a master,
(optionally) foremen, and a large number of workers The
main Lobster process creates an instance of a master, gener-
ates individual tasks, records them in the Lobster-DB, and
then submits the tasks to the master. The master passes
these tasks to multiple foremen, which then fan out tasks to
a large number of workers, where the tasks are executed. As
tasks complete, notification is returned through the foremen
to the master. As tasks are returned from the master to the
main Lobster process, the Lobster DB is updated appropri-
ately.

To get work done, the user must start workers by one means
or another. Workers need not all be on the same system;
they can be running simultaneously on any systems to which
the user has access. Worker processes can be started indi-
vidually from the command line, but more commonly the
request for workers is submitted in bulk to a batch system
which can start hundreds to thousands of workers simulta-
neously. When a worker is ready to accept a task, it makes
a TCP connection back to a foreman, which begins to send
it tasks.

1Need a better name here

Thursday, February 26, 15

K. Lannon

Scheduling
Lobster master uses DBS to build
database of work to be done

Work broken down into smallest sensible
quantum: jobit
Lobster master schedules assigns jobits to
tasks and schedules in Work Queue (WQ)

WQ master handles distributing tasks to
workers and tracks task progress

Optionally, system may include “foremen” to
mediate between WQ master and workers

Lobster communicates with WQ master to
track jobit completion

5

flows is in managing the opportunistic resources and e�-
ciently deploying workloads to them. The CMS workflow
management tools used for production (WMAgent [?]) or
T2 analysis (CRAB [?]) address this challenge using the
GlideInWMS [?] software framework. Although GlideIn-
WMS provides an excellent solution within those contexts,
capable of directing workloads to any OSG resource as well
as cloud resources following either the Amazon EC2 [?] or
Openstack [?] framework, it is less suitable in the context
of university clusters and T3 resources. The GlideInWMS-
based solution is well suited to the situation in which the
goal is obtaining access to the opportunistic resources for
the CMS collaboration as a whole. It lacks the capability to
limit access to a subset of the collaboration. This presents a
significant limitation in achieving the goal of integrating op-
portunistic campus resources for which the situation is often
that only specific users—for example, facutly and students
from the institution—are authorized to use the resources.
The approach described in this paper chooses an alternative
set of resource and management workload tool set especially
well suited for the case where access to resources must be
controlled with a fine granularity.

In addition to the challenges mentioned above, there are a
number of issues important for making use of opportunis-
tic resources under a wide range of situations that have not
yet been overcome by the existing tools employed by CMS.
Many scenarios for using opportunistic resources involve the
possiblibilty that running jobs will be preempted by the re-
source owners own jobs. Although strategies exist to miti-
gate the impacts of preemption, the nature of analysis jobs,
where it is essential that each proton collision is analyzed
once and only once, complicates the problem. Another chal-
lenge that is especially applicable to campus clusters is the
scenario in which a user has access to a potentially large scale
of generic computing resources, but cannot obtain the neces-
sary admin-level support to adapt those resources to a spe-
cialized analysis task, like LHC data analysis. In such cases,
it can be extremely powerful to have a set of tools which op-
erate with user-level permissions to accomplish things that
might otherwise require admin-level intervention. The ap-
proach explored in this paper seeks to address both of these
challenges as well.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-
lions of data intensive applications on tens of thousands of
cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and
economic concerns change.

The components of Lobster are arranged in three tiers: the
scheduling tier schedules and dispatches the jobs to be
run, the data tier manages the input data, output storage,
and software delivery system, and the execution tier con-
sists of a large collection of opportunistic machines where
analysis jobs run.

Figure 1 shows the architecture of Lobster. An execution be-

Figure 1: Lobster Architecture

gins with the main Lobster process1 that is invoked by the
end user to initiate a workload. The user provides a config-
uration file which describes the input data sources and the
analysis code which is to be run on each input data source.
The main Lobster process creates a local SQlite database
(Lobster DB) which persistently records the mapping from
jobs to tasks. to persistently the data files, the jobits into
which the task is divided, and the generation and progress
of jobs on remote worker cores.

(Conceptually, the scheduler node could be implemented as
a replicated service, storing its state in a service such as
Zookeeper [?]. To date, this has not been necessary because
the system state is quickly and automatically recovered if
the scheduler node should crash and reboot.)

The tasks themselves are executed by theWork Queue (WQ) [?]
distributed execution system, which consists of a master,
(optionally) foremen, and a large number of workers The
main Lobster process creates an instance of a master, gener-
ates individual tasks, records them in the Lobster-DB, and
then submits the tasks to the master. The master passes
these tasks to multiple foremen, which then fan out tasks to
a large number of workers, where the tasks are executed. As
tasks complete, notification is returned through the foremen
to the master. As tasks are returned from the master to the
main Lobster process, the Lobster DB is updated appropri-
ately.

To get work done, the user must start workers by one means
or another. Workers need not all be on the same system;
they can be running simultaneously on any systems to which
the user has access. Worker processes can be started indi-
vidually from the command line, but more commonly the
request for workers is submitted in bulk to a batch system
which can start hundreds to thousands of workers simulta-
neously. When a worker is ready to accept a task, it makes
a TCP connection back to a foreman, which begins to send
it tasks.

1Need a better name here

Thursday, February 26, 15

K. Lannon

Data

Leverage wide variety of tools (CVMFS, Parrot, Chirp,
XrootD, WQ) to distribute data to jobs

CMSSW distributed to workers via CVMFS+Parrot (squid
cache, worker cache)
Job scripts and sandbox transferred via WQ (worker cache)
Conditions via Frontier (squid cache)
Input data delivered via AAA (XrootD) or ND T3 storage
(XrootD or Chirp)
Outputs transferred via Chirp

6

flows is in managing the opportunistic resources and e�-
ciently deploying workloads to them. The CMS workflow
management tools used for production (WMAgent [?]) or
T2 analysis (CRAB [?]) address this challenge using the
GlideInWMS [?] software framework. Although GlideIn-
WMS provides an excellent solution within those contexts,
capable of directing workloads to any OSG resource as well
as cloud resources following either the Amazon EC2 [?] or
Openstack [?] framework, it is less suitable in the context
of university clusters and T3 resources. The GlideInWMS-
based solution is well suited to the situation in which the
goal is obtaining access to the opportunistic resources for
the CMS collaboration as a whole. It lacks the capability to
limit access to a subset of the collaboration. This presents a
significant limitation in achieving the goal of integrating op-
portunistic campus resources for which the situation is often
that only specific users—for example, facutly and students
from the institution—are authorized to use the resources.
The approach described in this paper chooses an alternative
set of resource and management workload tool set especially
well suited for the case where access to resources must be
controlled with a fine granularity.

In addition to the challenges mentioned above, there are a
number of issues important for making use of opportunis-
tic resources under a wide range of situations that have not
yet been overcome by the existing tools employed by CMS.
Many scenarios for using opportunistic resources involve the
possiblibilty that running jobs will be preempted by the re-
source owners own jobs. Although strategies exist to miti-
gate the impacts of preemption, the nature of analysis jobs,
where it is essential that each proton collision is analyzed
once and only once, complicates the problem. Another chal-
lenge that is especially applicable to campus clusters is the
scenario in which a user has access to a potentially large scale
of generic computing resources, but cannot obtain the neces-
sary admin-level support to adapt those resources to a spe-
cialized analysis task, like LHC data analysis. In such cases,
it can be extremely powerful to have a set of tools which op-
erate with user-level permissions to accomplish things that
might otherwise require admin-level intervention. The ap-
proach explored in this paper seeks to address both of these
challenges as well.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-
lions of data intensive applications on tens of thousands of
cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and
economic concerns change.

The components of Lobster are arranged in three tiers: the
scheduling tier schedules and dispatches the jobs to be
run, the data tier manages the input data, output storage,
and software delivery system, and the execution tier con-
sists of a large collection of opportunistic machines where
analysis jobs run.

Figure 1 shows the architecture of Lobster. An execution be-

Figure 1: Lobster Architecture

gins with the main Lobster process1 that is invoked by the
end user to initiate a workload. The user provides a config-
uration file which describes the input data sources and the
analysis code which is to be run on each input data source.
The main Lobster process creates a local SQlite database
(Lobster DB) which persistently records the mapping from
jobs to tasks. to persistently the data files, the jobits into
which the task is divided, and the generation and progress
of jobs on remote worker cores.

(Conceptually, the scheduler node could be implemented as
a replicated service, storing its state in a service such as
Zookeeper [?]. To date, this has not been necessary because
the system state is quickly and automatically recovered if
the scheduler node should crash and reboot.)

The tasks themselves are executed by theWork Queue (WQ) [?]
distributed execution system, which consists of a master,
(optionally) foremen, and a large number of workers The
main Lobster process creates an instance of a master, gener-
ates individual tasks, records them in the Lobster-DB, and
then submits the tasks to the master. The master passes
these tasks to multiple foremen, which then fan out tasks to
a large number of workers, where the tasks are executed. As
tasks complete, notification is returned through the foremen
to the master. As tasks are returned from the master to the
main Lobster process, the Lobster DB is updated appropri-
ately.

To get work done, the user must start workers by one means
or another. Workers need not all be on the same system;
they can be running simultaneously on any systems to which
the user has access. Worker processes can be started indi-
vidually from the command line, but more commonly the
request for workers is submitted in bulk to a batch system
which can start hundreds to thousands of workers simulta-
neously. When a worker is ready to accept a task, it makes
a TCP connection back to a foreman, which begins to send
it tasks.

1Need a better name here

flows is in managing the opportunistic resources and e�-
ciently deploying workloads to them. The CMS workflow
management tools used for production (WMAgent [?]) or
T2 analysis (CRAB [?]) address this challenge using the
GlideInWMS [?] software framework. Although GlideIn-
WMS provides an excellent solution within those contexts,
capable of directing workloads to any OSG resource as well
as cloud resources following either the Amazon EC2 [?] or
Openstack [?] framework, it is less suitable in the context
of university clusters and T3 resources. The GlideInWMS-
based solution is well suited to the situation in which the
goal is obtaining access to the opportunistic resources for
the CMS collaboration as a whole. It lacks the capability to
limit access to a subset of the collaboration. This presents a
significant limitation in achieving the goal of integrating op-
portunistic campus resources for which the situation is often
that only specific users—for example, facutly and students
from the institution—are authorized to use the resources.
The approach described in this paper chooses an alternative
set of resource and management workload tool set especially
well suited for the case where access to resources must be
controlled with a fine granularity.

In addition to the challenges mentioned above, there are a
number of issues important for making use of opportunis-
tic resources under a wide range of situations that have not
yet been overcome by the existing tools employed by CMS.
Many scenarios for using opportunistic resources involve the
possiblibilty that running jobs will be preempted by the re-
source owners own jobs. Although strategies exist to miti-
gate the impacts of preemption, the nature of analysis jobs,
where it is essential that each proton collision is analyzed
once and only once, complicates the problem. Another chal-
lenge that is especially applicable to campus clusters is the
scenario in which a user has access to a potentially large scale
of generic computing resources, but cannot obtain the neces-
sary admin-level support to adapt those resources to a spe-
cialized analysis task, like LHC data analysis. In such cases,
it can be extremely powerful to have a set of tools which op-
erate with user-level permissions to accomplish things that
might otherwise require admin-level intervention. The ap-
proach explored in this paper seeks to address both of these
challenges as well.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-
lions of data intensive applications on tens of thousands of
cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and
economic concerns change.

The components of Lobster are arranged in three tiers: the
scheduling tier schedules and dispatches the jobs to be
run, the data tier manages the input data, output storage,
and software delivery system, and the execution tier con-
sists of a large collection of opportunistic machines where
analysis jobs run.

Figure 1 shows the architecture of Lobster. An execution be-

Figure 1: Lobster Architecture

gins with the main Lobster process1 that is invoked by the
end user to initiate a workload. The user provides a config-
uration file which describes the input data sources and the
analysis code which is to be run on each input data source.
The main Lobster process creates a local SQlite database
(Lobster DB) which persistently records the mapping from
jobs to tasks. to persistently the data files, the jobits into
which the task is divided, and the generation and progress
of jobs on remote worker cores.

(Conceptually, the scheduler node could be implemented as
a replicated service, storing its state in a service such as
Zookeeper [?]. To date, this has not been necessary because
the system state is quickly and automatically recovered if
the scheduler node should crash and reboot.)

The tasks themselves are executed by theWork Queue (WQ) [?]
distributed execution system, which consists of a master,
(optionally) foremen, and a large number of workers The
main Lobster process creates an instance of a master, gener-
ates individual tasks, records them in the Lobster-DB, and
then submits the tasks to the master. The master passes
these tasks to multiple foremen, which then fan out tasks to
a large number of workers, where the tasks are executed. As
tasks complete, notification is returned through the foremen
to the master. As tasks are returned from the master to the
main Lobster process, the Lobster DB is updated appropri-
ately.

To get work done, the user must start workers by one means
or another. Workers need not all be on the same system;
they can be running simultaneously on any systems to which
the user has access. Worker processes can be started indi-
vidually from the command line, but more commonly the
request for workers is submitted in bulk to a batch system
which can start hundreds to thousands of workers simulta-
neously. When a worker is ready to accept a task, it makes
a TCP connection back to a foreman, which begins to send
it tasks.

1Need a better name here

Thursday, February 26, 15

K. Lannon

Execution: Workers
Can be submitted via whatever batch
system is available (HTCondor, SGE,
PBS, etc.)

CCTools includes tools for managing
worker pools

Responsible for configuring resource to
accept CMS tasks (setup CMSSW,
etc.)
Holds resources and runs tasks for
master until work is finished or worker
is evicted
Multicore workers will run multiple
tasks in parallel, sharing local cache for
CVMFS and WQ files

7

flows is in managing the opportunistic resources and e�-
ciently deploying workloads to them. The CMS workflow
management tools used for production (WMAgent [?]) or
T2 analysis (CRAB [?]) address this challenge using the
GlideInWMS [?] software framework. Although GlideIn-
WMS provides an excellent solution within those contexts,
capable of directing workloads to any OSG resource as well
as cloud resources following either the Amazon EC2 [?] or
Openstack [?] framework, it is less suitable in the context
of university clusters and T3 resources. The GlideInWMS-
based solution is well suited to the situation in which the
goal is obtaining access to the opportunistic resources for
the CMS collaboration as a whole. It lacks the capability to
limit access to a subset of the collaboration. This presents a
significant limitation in achieving the goal of integrating op-
portunistic campus resources for which the situation is often
that only specific users—for example, facutly and students
from the institution—are authorized to use the resources.
The approach described in this paper chooses an alternative
set of resource and management workload tool set especially
well suited for the case where access to resources must be
controlled with a fine granularity.

In addition to the challenges mentioned above, there are a
number of issues important for making use of opportunis-
tic resources under a wide range of situations that have not
yet been overcome by the existing tools employed by CMS.
Many scenarios for using opportunistic resources involve the
possiblibilty that running jobs will be preempted by the re-
source owners own jobs. Although strategies exist to miti-
gate the impacts of preemption, the nature of analysis jobs,
where it is essential that each proton collision is analyzed
once and only once, complicates the problem. Another chal-
lenge that is especially applicable to campus clusters is the
scenario in which a user has access to a potentially large scale
of generic computing resources, but cannot obtain the neces-
sary admin-level support to adapt those resources to a spe-
cialized analysis task, like LHC data analysis. In such cases,
it can be extremely powerful to have a set of tools which op-
erate with user-level permissions to accomplish things that
might otherwise require admin-level intervention. The ap-
proach explored in this paper seeks to address both of these
challenges as well.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-
lions of data intensive applications on tens of thousands of
cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and
economic concerns change.

The components of Lobster are arranged in three tiers: the
scheduling tier schedules and dispatches the jobs to be
run, the data tier manages the input data, output storage,
and software delivery system, and the execution tier con-
sists of a large collection of opportunistic machines where
analysis jobs run.

Figure 1 shows the architecture of Lobster. An execution be-

Figure 1: Lobster Architecture

gins with the main Lobster process1 that is invoked by the
end user to initiate a workload. The user provides a config-
uration file which describes the input data sources and the
analysis code which is to be run on each input data source.
The main Lobster process creates a local SQlite database
(Lobster DB) which persistently records the mapping from
jobs to tasks. to persistently the data files, the jobits into
which the task is divided, and the generation and progress
of jobs on remote worker cores.

(Conceptually, the scheduler node could be implemented as
a replicated service, storing its state in a service such as
Zookeeper [?]. To date, this has not been necessary because
the system state is quickly and automatically recovered if
the scheduler node should crash and reboot.)

The tasks themselves are executed by theWork Queue (WQ) [?]
distributed execution system, which consists of a master,
(optionally) foremen, and a large number of workers The
main Lobster process creates an instance of a master, gener-
ates individual tasks, records them in the Lobster-DB, and
then submits the tasks to the master. The master passes
these tasks to multiple foremen, which then fan out tasks to
a large number of workers, where the tasks are executed. As
tasks complete, notification is returned through the foremen
to the master. As tasks are returned from the master to the
main Lobster process, the Lobster DB is updated appropri-
ately.

To get work done, the user must start workers by one means
or another. Workers need not all be on the same system;
they can be running simultaneously on any systems to which
the user has access. Worker processes can be started indi-
vidually from the command line, but more commonly the
request for workers is submitted in bulk to a batch system
which can start hundreds to thousands of workers simulta-
neously. When a worker is ready to accept a task, it makes
a TCP connection back to a foreman, which begins to send
it tasks.

1Need a better name here

Thursday, February 26, 15

K. Lannon

Monitoring
Opportunistic resources change
dynamically (chaotically)

Resources come and go depending on
owner activity
Heterogeneous quality
Can fail randomly

Monitoring critical to Lobster success
Lobster tracks time stamps of every
phase of task setup and execution
Collects information in plots and tables
on webpage
Gives comprehensive picture of system
components so that bottlenecks and
failures can be diagnosed and overcome

8
Thursday, February 26, 15

K. Lannon

Design Motivations
Maximize opportunistic spirit!
CCTools suite operates completely in user space: no admin intervention
required to use opportunistic resources
Eviction requires agility: Decouple job size from output size and user task
management

Lobster works in jobits, tracks splitting, handles resubmission without user
intervention
Often leads to really small output files--merged automatically
When processing multiple datasets, jobit execution randomized to level load on
AAA

Persistence pays off
Workers try very hard to get tasks started: Use local CVMFS if present, switch to
Parrot if not, etc.
Lobster retries failed tasks until you stop it: needs to be resilient against transient
failure in opportunistic system
Work Queue Pool: if workers die/lost, resubmit more

9
Thursday, February 26, 15

K. Lannon

Processing Lots of Data
ND users running only on ND resources competitive with CSA14 activity

10

�
�
��
�
�
��
	

�
�
�
	
�
�
��
�
�
�
�
�
� �

	

�
�
��
�
��
����

�	
�

�
��
��
��

�

�
��
��
��
�
�
�
�
	
�	
�

�
��
��
��

����������	�

��
����

��������������������������	�

����� ����� ����� ���	

��
��
��
��
�	

�
��
�
��
��

�
��
��
��
�	
�
��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
�	
��
�

��
��
��
��
�
��
��
��
�

��
��
��
��
�	
��
��
�
��

�
�!
	�
��
"�
�#
��
�
�$
%&
'�
��
�'
�

(�
	�
)	

��
��
��
��
��
�
��
�	

��
��
	�
��
��
�

��
��
��
��
��
��
�

*�
��
��
�	
��
+

,�
��
��
	�
��
-�
��
�

��
��
��
�	
.�
��
�
�(
��
��
��

��
��
+�
/�
��
�!
�*
��
��
�"
��
�

��
��
��
�0
��
��
��
��
�	
��
�

12
32
4�
54
'5

4�
�2
45
��
'5

�
	�
��
6�
	
�
�

&&
75
7�
1�
'5

�
��
��
�2

��
��
��
��
��
�
�/
��
�

0�
��
�	
��
�0
��
.�
��

��
77
17
�1
'5

5�

255�

355�

155�

5

$

2

7#2

#6
#14 #21

Thursday, February 26, 15

K. Lannon

Reaching ~10k running jobs
This is ~10% of size of CMS global pool
Comparable to scale of one US CMS T2 site
More than total of all US CMS dedicated T3 resources

11
Figure 6: Number of concurrent tasks running (top), number of tasks returning (middle), and the CPU/wall
ratio (bottom) as a function of time.

Deep-dive into a few key metrics to show overall high e�-
ciency.

Comparison to other HEP computing sites to show magni-
tude.

We have been using Lobster successfully to process data on
10,000 opportunistic cores at the University of Notre Dame.
An exemplary overview of the concurrently running jobs can
be found at the top of Figure 6, with an estimate of the
data pulled in over the time-frame of four hours in Figure 8,
showing that Lobster was the biggest consumer of XrootD
data within CMS at the time of running. To assess perfor-
mance, the overall runtime of the jobs can be broken down
as in Table 1, which shows that about three quarters of the
total runtime were spent processing data. Here, the most
significant loss of e�ciency have been failed jobs, caused by
temporary xrootd access problems, also visible in the middle
part of Figure 6. This is followed by a Wall time noticeably
exceeding the used CPU time. The higher contribution of
non-CPU processing time was to be expected, as the campus
bandwidth, 10Gbit/s, was entirely used up by the running
jobs. Nevertheless, the overall e�ciency, as seen in the bot-
tom of Figure 6, is still very high, with the aforementioned
dip in e�ciency due to data access problems.

Running simulation jobs, on the other hand, gives a very
di↵erent picture. The limitation of external bandwidth to
access remote data is lessened by several orders of magni-
tude, as external data is only needed to overlay pile-up inter-

Job Phase Time (h) Fraction (%)

Processing CPU 171036 53.4
Non-CPU processing 65356 20.4
Failed jobs 44830 14.0
WQ Startup 22056 6.9
WQ Output transfer wait 8954 2.8

Total 320462

Table 1: Breakdown of the accumulated job runtime
for data processing into the most dominant phases.

actions, i.e. noise, on top of the simulated process. This al-
lowed us to scale Lobster up to 20,000 concurrently running
simulation jobs as shown in Figure 7. New challenges arise in
that the squid deployed had trouble serving up the data re-
quired to create the software environment fast enough (Fig-
ure 7, second from above), which could have been mitigated
by an increased number of squid servers. Alternatively, in-
creasing the number of cores sharing a Parrot cache should
lower the cost of the software setup. As the transmitted
data is cached on the worker, the setup cost is significantly
lowered for subsequent jobs running.

Similarly, the stage-out times via Chirp, second to last in
Figure 7, display a periodic behavior, in which transfer times
are increased due to an overloaded Chirp server. As simu-
lation jobs require a Chirp transfer of some of their input
files from the local storage element to the worker, additional

Transient XrootD outage

Thursday, February 26, 15

K. Lannon

Challenges
Bottlenecks when running at large scales

Job overhead time increases non-linearly: bottleneck in squid cache?
Output Chirp server can get overloaded and fail

12

Figure 7: From the top: number of concurrent tasks running; time to setup CMSSW software release and
initialize CMS environment; time to stageout data from local to permanent storage; and exit code of failed
jobs as a function of time. At the beginning of the run, the release setup time peaks around 400 minutes as
worker caches are filled. During this period, high load on the squid servers is responsible for most job errors
(exit code 171, shown in light blue in the bottom panel.) After most caches are filled, the release setup time
drops, as does the prevalence of jobs exiting with code 171. ((insert hypothesis about structure in stageout
time plot.))

Job startup time exceeds 300 minutes!

Chirp server
struggling to keep

up with output rates

Thursday, February 26, 15

K. Lannon

Near Term Future
Resolve bottlenecks preventing scaling to 20k cores

Also important for decreasing overhead to minimize
eviction losses

Explore possibilities for Lobster to dynamically adapt
to running conditions

E.g. Automatically adjust jobits/task to optimize for
current running conditions (eviction)

Improvements in reliability and robustness
E.g. Run Chirp server as service instead of user process
to keep users from overwhelming login node with Chirp
processes

13
Thursday, February 26, 15

K. Lannon

Conclusions

Lobster has enabled ND team to exploit
opportunistic campus resources to 10k core scale
Successful collaboration between physics and CS
teams

Learned a number of useful things
Motivated improvements to CCTools suite

Potential for lessons learned and innovations to be
translated more widely to CMS

Anna and Matthias now working as CRAB3 developers
See Brian’s talk for longer term vison

14
Thursday, February 26, 15

